P=80x-0.4x^2-200

Simple and best practice solution for P=80x-0.4x^2-200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P=80x-0.4x^2-200 equation:



=80P-0.4P^2-200
We move all terms to the left:
-(80P-0.4P^2-200)=0
We get rid of parentheses
0.4P^2-80P+200=0
a = 0.4; b = -80; c = +200;
Δ = b2-4ac
Δ = -802-4·0.4·200
Δ = 6080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6080}=\sqrt{64*95}=\sqrt{64}*\sqrt{95}=8\sqrt{95}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{95}}{2*0.4}=\frac{80-8\sqrt{95}}{0.8} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{95}}{2*0.4}=\frac{80+8\sqrt{95}}{0.8} $

See similar equations:

| 2(4k-2)-2k=7k-6 | | 2(4k-2)-2k=8k-6 | | 7/12b=14 | | 2(4k-2)-2k=6k-1 | | 2(4k-2)-2k=6k-3 | | 2(4k-2)-2k=6k-5 | | 2(4k-2)-2k=6k-6 | | 2(4k-2)-2k=6k-9 | | Y=225+75.98(x-1) | | 1x+15=5x+7 | | 20/21x=11 | | 2x+21=1x+15 | | 2(4k-2)-2k=1k-2 | | y-3=1.7 | | 3x-27=4+8 | | 2(4k-2)-2k=8k-13 | | 88=4(2x+6) | | 2(4k-2)-2k=3k-9 | | |3m+5|=-4 | | x-2x2+7=0 | | 20/16x=11 | | 6(2n+1)=12 | | 16/20x=11 | | 4+11(10+13x)=13x-2(x9) | | 4+11(10+13x)=13x-2(x=9) | | 2(4k-2)-2k=5k-9 | | 6.75+1.25x=31.25 | | 5w^2=6w+8 | | 45+0.15x=50+0.10X | | -3.8x—5.9x=223.1 | | 45+0.15x=50+0.10 | | n^2-10n+18=0 |

Equations solver categories